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Real-Time Design with Peer Tasks

ANDRE GOFORTH, NORMAN R. HOWF_S,*JONATHAN D. WOOD,* AND MICHAEL J. BARNESt

Ames Research Center

Summary may be made under as realistic system load conditions
as possible.

We introduce a real-time design methodology for large
scale, distributed, parallel architecture, real-time systems
(LDPARTS) that approaches system scheduling analysis I. Introduction
in a way different from those methods that use a scalar
metric of urgency such as found in rate (or deadline) The real-time methodology we introduce addresses three
monotonic theories. The latter assume the place for sched- issues in large scale, distributed, parallel architecture,

real-time systems (LDPARTS). We base the feasibility
uling priorifization to be at the functional level of run- of our approach on empirical data found in the application
time processes. For example, in the Ada programming of our method to an existing case study. Though the case
language this refers to task scheduling. In our method, the study is in the Ada83 programming language, which
fundamental units of prioritization, which we call work comes with its own run-time environment, we believe the
items, are system level or domain specific objects with method is readily applicable in any environment with
timing requirements (deadlines) associated with them in inter-process communication (]PC) and network services
the requirements specification. For LDPARTS, a work that provide robust asynchronous concurrency (ref. 2).
item consists of a collection of tasks. No priorities are The three unique issues are how to:
assigned to tasks or, equivaienfly, tasks have equal priori-
ties. Such a collection of tasks is referred to as peer tasks. (1) do on-line scheduling with deadline guarantees;

Current scheduling theories are applied with artifact (2) minimize scheduling overhead; and
deadlines introduced by the designer whereas our method
schedules work items to meet specification deadlines (3) sustain performance in overload conditions.

(sometimes called end-to-end deadlines) required by The first issue has been discussed as the "disconnect"

the user. between real-time design theory and scheduling theory at
The new method supports these scheduling properties, a workshop on Large, Distributed, Parallel Architecture,
The scheduling of work items is based on domain specific Real-Time Systems (ref. 3). This workshop was held at
importance rather than task level urgency and still meets Institute for Defense Analyses (IDA) and sponsored
as many work item deadlines as can be met by scheduling jointly by the NASA Ames Research Center and the
tasks with respect to urgency. Second, the minimum Ballistic Missile Defense Office (BMDO).

(closest) on-line deadline that can be guaranteed for a Designers of complex, real-time systems must address
work item of highest importance, scheduled at run time, is robustness, efficiency, and availability as well as timing
approximately the inverse of the throughput, measured in (ref. 4). In many cases, the resulting system decompo-

work items per second. Third, throughput is not degraded sition is not readily, if at all, analyzable by current
during overload and instead of resorting to task shedding scheduling theory techniques, hence the disconnect.
during overload, the designer can specify which work While workshop participants agreed that real-time
items to shed. We prove these properties in a mathemati- systems need to have correct timing (i.e., meet required
cal model (ref. I). The degree to which these hold for a deadlines), they disageed about systems being designed
specific system depends on how small the statistical to accommodate a specific scheduling approach.
variance of work item throughput is over the required
system performance envelope. The method works best in All participants agreed that schedulability analysis needed
a project with a "cut and try" iterative development to be part of the design process. On one hand, the sched-
approach, where measurement of work item throughput uling theorists thought that schedulability analysis should

drive the design process. Their argument was that, given
the ability of a real-time system to meet its timing
requirements is so important, if schedulability analysis

*Institute for Defense Analyses, Alexandria, Virginia. (often referred to as feasibility analysis) is not begun in
?Recom Technologies, Moffett Field, California.



the earliest phases of design, the resultant system may not able to size the system appropriately based on a priori
be capable of meeting its timing requirements. On the knowledge so as to rule out the possibility of ever having
other hand, several designers were not convinced that, the system in a state of "overload," i.e., a state in which
even if the system's tasks satisfied the constraints of a there are more requests for real-time service during some
given scheduling theory, this actually ensured that the (possibly temporary) period than the system can possibly
final system would behave as predicted. One reason given respond to. Such is often the case for closed loop control
is that current scheduling theories do not adequately make systems and low level sample data systems. The concept
allowances for all significant factors related to "real of importance is elaborated on in section 2.
world" behavior found in LDPARTS.

Another element of our approach is its focus on work
In regard to the second issue, some participants noted that item throughput. A common design characteristic of real-
current scheduling theories are applied to artifact dead- time systems is throughput. The required throughput or
lines, introduced by system designers, and not to specifi- rate, items processed per second, depends upon the needs
cation deadlines, required by the users, thus introducing, of the application. For many applications real-time
arguably, significant overhead, just to be able to use these behavior means "fast enough." For others, there is an
theories. Rate monotonic theory (ref. 5) is one example additional requirement of a sufficiently small variance
that was cited, especially in attempts to use it in in the throughput. For example, consider the case of a
LDPARTS. system, X, that can accomplish tasks at some fixed rate,

say 30 milliseconds, with a very small standard deviation,
The third issue, which was not as universally important to and another system, Y, that can accomplish the same
workshop participants as the first two, was very important
in the kind of systems ARPA (Advanced Research tasks at some fixed rate, say 25 milliseconds, but with a
Projects Agency), our sponsor, had us investigate. In large standard deviation. Now Y is clearly "faster" thanX, but if we find the standard deviation of Y to be so
section 3, we discuss a hypothetical air defense system large that it would occasionally cause Y to perform thewhere, because of the hostile environment, so-called

task in, say 75 milliseconds, whereas the standard devia-
nominal operating conditions must include sustained tion of X is so small that it could never (in the lifetime of
operation in overload conditions. Put another way, such the system) execute the task in over 31 milliseconds, then
systems must be designed to operate in overload we may claim that X exhibits "real-time behavior" with
conditions as if these were part of nominal operating guaranteed deadlines, while Y does not.
requirements.

In our experience with the method which is discussed in
Our design approach consists of the application of these

section 5, we have found work item performance to be
fundamental rules: sufficiently stable so as to allow us to draw conclusions

Rule 1. Schedule work items by importance to meet about the system's ability to meet hard deadlines.
their specification deadlines. Use peer task sets to Furthermore, work item throughput was found, for all
accomplish these work items, practical purposes, to be constant even in overload

conditions. The scheduling properties supported by our
Rule 2. Model each real world process with a single
task (independent thread of control), methodology are as follows:

Rule 3. Reduce the mean service time of cyclic (1) Work item processing time (after preemption of any
lower importance work item) is essentially constant, and

functions, the inverse of the throughput, measured in work items per
The underlying concepts and rationale for these rules and second, can be considered the minimum on-line guarantee
how to apply them are discussed in section 4. that can be met if no work item of higher or equal

Our approach addresses the three issues by introducing importance awaits processing.
the paradigm of work item and its importance as a metric (2) Work items based on importance may be scheduled
for scheduling prioritization. In contrast, some real-time without incurring degraded throughput caused by on-line
scheduling approaches are based entirely on urgency, task scheduling.

such as Earliest Deadline First 0EDF)where the next task (3) The maximum number of the most important work
to be executed is the one with the nearest deadline. Any item deadlines may be met during overload and instead of
task significance is identical to the task's deadline, i.e.,
urgency. For real-time problems where all or most of the resorting to task shedding during overload, the designer
information necessary to schedule the tasks is known in can specify which work items to shed.
advance, scheduling based on urgency can be appropriate. We provide proofs of these in section 6. We use the
The reason is because the designer of the system may be mathematical model and results of Detouzos and Mok



(ref. 1),which we will refer to as the D-M model. It is This follows from our concept of importance as a
common knowledge that when scheduling theories are combination of significance and urgency. Formally, we

, applied to real world problems, the results are not what write importance as a function of significance and
the theories predict. Why is this, in view of the fact that urgency, i.e., I = F(s, u) where F is some function of
these scheduling theories are "proved mathematically"? the significance s and the urgency u. Furthermore,
It is because mathematical models, including the D-M importance is a dynamic concept in that its value may be
model, make a number of assumptions about the real-time a function of time, where both significance and urgency
environment so as to render them not sufficiently accurate are functions of time, say s(t) and u(t). Clearly, the
in predicting how a real-time system will behave. Some urgency u(t) is continuously changing with time; while
such assumptions are (1) there is no scheduling overhead, the significance s(t) may be constant or changing with
(2) there is no preemption overhead, (3) the computation time. We may write I as l(t) = F[s(t), u(t)].

time of each task is constant, (4) the tasks are relatively For our purposes, we assume that F is definable so that
independent, at least from a scheduling point of view, and urgent work items will not miss their deadlines unneces-
(5) time is quantized rather than continuous. This does not sadly, i.e., be missed while a work item of higher
mean these models are of no use; rather, their predictive importance is executed whose urgency is low enough
power is limited to certain environments. Only careful, (deadline far enough away) that the urgent work item
comprehensive testing can assure that real-time systems could have been executed and still have had enough time
meet their deadlines. The "guarantees" of real-time

to meet the higher importance work item's deadline.
scheduling theories are helpful insofar as careful, We make no attempt to define a particular importance
comprehensive testing canverify how well the system function F for each work item because such functions are
behaves in relation to the theory as well as, and more

domain specific. We assume that these functions exist and
importantly, in relation to the requirements. In section 5, can be evaluated at any time t. Furthermore, we will not
we discuss our experimental findings of real-time deal with the issue of how long it takes to compute the
behavior that matches what the theory predicts, proper- importance functions on line. One can construct
ties 1through 3 above, and behavior that deviates from pathological problems in which the time to compute the
the theory, importance functions is arbitrarily large. However, for
We extend our appreciation to Mark Boyd and David many important problems the time to evaluate the
Galant of Ames Research Center for their diligent efforts importance functions is bounded and small. Clearly, an
in reviewing this paper and making significant extremely complex importance function may not be
recommendations, suitable for a given real-time problem. How to design

importance functions is not within the scope of this paper.
What we will discuss in the next section is how to use

2. Significance and Urgency them under the assumption that appropriate importance

For our purposes, the concept of significance has to do functions can be evaluated at any time t. As an example,
with the impact of what will happen if a work item misses note that "aging algorithms" can be incorporated as u(t) in
its deadline. The concept of urgency has to do with how an importance function F so that the importance of a task
close the deadline for the work item is to the current time becomes greater as time passes.

(time now). It is possible to have work items that are

highly significant but not urgent or that are very urgent 3. LDPARTS Example
but not significant. In general, all work items have some
measure of significance and urgency, and there may be A real-time problem (ref. 6) that illustrates the class of
work items that are simultaneously very significant and problems our method addresses is as follows: Imagine an
very urgent. Our concept of importance is the primitive air defense system that must be capable of simultaneously
idea of doing the right thing at each instant, in the best handling up to 1,000 "radar tracks" of possible "threats
interest of providing the desired solution to the problem. (targets)," up to 100 known threats (tracks that have pre-
The domain expert or "problem owner" is in the best viously been identified as targets), and up to 10 engage-
position to identify importance. At the workshop several ments where an engagement means that a defensive
real-time specialists stressed the need to have real-time weapon system is employed against a known target.
systems that do not give priority to executing significant Tracks may include many things other than threats, such
tasks that are not urgent in favor of urgent tasks that may as civilian aircraft in the area, friendly aircraft, decoys,
not be significant, thereby causing a deadline for a and birds, as well as real threats.
(possibly insignificant) task to be missedunnecessarily.
The approach we advocate does not violate this need.



The numbers 1,000, 100, and 10are used only for illus- moving in without doing a "correlation" calculation. If a
tration. It is not meant to imply that a real air defense track is "lost" it may quickly reappear and no overall
system would have this requirement. The differences in harm may be done as the calculations can begin again
orders of magnitude from 10 to 100 to 1,000 are one shortly thereafter. Though there is some risk associated
example of a physical characteristic typical of an with this momentary loss because precious time is used in
LDPART system. For instance, the air defense system updating track information, we may assume that the
may only have 10 launchers or 10antiaircraft weapons significance of updating an unidentified track, in these
with which to engage targets. The amount of processing circumstances, is small.
may increase as targets become known and approach the
defended area more closely, thereby limiting the number However, if a track that has been already classified as a
of actual targets that the system can handle to only 100. target is temporarily lost, the risk is greater. Furthermore,

not all threats have the same lethality. One incoming
Suppose that the radar subsystem, because of its physical target may have the capability to wipe out the whole air
characteristics, gets information on tracks once a second defense system while another may only have the capa-
but that tracks can appear aperiodically on the radar bility to degrade its performance. The air defense system
screen and also vanish aperiodically from the radar is also responsible for protecting other assets in the area
screen. Further, suppose there is a requirement that once a as well as itself. Some identified targets may not be
track "appears" on the radar screen, it must be determined approaching the air defense system but moving toward
within 2 seconds whether the track is a target. The test or one of these assets. The value of the asset then affects the
tests that are performed to determine this may not be significance of the target. Finally, if a target is engaged
conclusive, in which case the track may appear again to and the guidance update deadline is missed, the defensive
the radar within another second and need to be repro- weapon may be temporarily or permanently lost, which
cessed to determine whether the track is a target. This may be the highest risk of all.
goes on until the track either disappears from the screen
or possibly gets so close that it is automatically classified To complicate the situation, suppose that it is possible for

the enemy to field thousands of decoys, or the system
as a target, may have to be used in the "heat of battle" where the
Furthermore, suppose that once a track is classified as a friendly aircraft in the vicinity together with civilian
target, it then has to be "monitored" within 1 second each traffic and enemy threats temporarily exceed the capacity
time the radar "illuminates" the target. All targets get of the system in one way or another, i.e., more threats
illuminated approximately once a second, but since the than 100 or more engageable targets than 10. Air defense
targets are moving with respect to the radar, the time systems are often deployed in multiple locations in an
between illumination need not be periodic for an indi- area. They are designed to share the overall battle load,
vidual target. The monitoring of the track determines the but due to chance, one air defense unit may encounter
relative lethality of the target and therefore influences the much more of the load than others. It is therefore
significance of the target. Finally, suppose that once a impossible to design such a system so that it will never
target is identified it must be engaged within 2 seconds encounter overload.

provided there is a weapon system available to engage it, It may be becoming clear to the reader that if the sched-
with priority being given to engaging the most important uling of tasks is based only on urgency, we may maxi-
threats first. Suppose further that for the targets that are

mize the number of deadlines met while unnecessarily
currently engaged, guidance update information has to be missing the really important work item deadlines. There
relayed to the defensive weapon (say an air defense
missile) every 100 milliseconds while it is homing in on are two things left to discuss about this example. First we
the target, want to discuss why such systems tend to start missing

critical deadlines prematurely, and second we want to
For each requirement corresponding to the various discuss the behavior of current scheduling algorithms
deadlines of 2 seconds, 1 second, and 100milliseconds, during overload. Both of these discussions provide
there is a significance associated with the requirement. If motivation for the method we will introduce.
the calculation associated with one of the 1,000 tracks
misses its deadline, the track may temporarily be "lost." First, real weapon systems of the type suggested by our
This has to do with the fact that tracks frequently "cross" example are often geographically distributed and so
on the display corresponding to points in time where the complex that multiple designers are required to design
radar cannot distinguish between two tracks and therefore various parts of the system. There are literally hundreds
may not know, for instance, what direction the track is of tasks (independent threads of control) and no one

person understands all the ramifications of task-to-task
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interaction. Because the current mathematical models processor utilization is high, i.e., in periods of heavy load
used in real-time analysis do not sufficiently account for or overload. As Briand (ref. 7) states in his paper:

, all the scheduling factors in the real world problem space, It is not because a task's execution time is the
these systems often begin missing deadlines at loads far shortest or that its deadline is the closest that is more

lower than the theoretical overload level for which they important [but] that this task preferably achieves its
were designed, deadlines. Weare driven back to the initialproblem
Why do such systems tend to start missing critical dead- of the taskpriority allocation algorithms: the only
lines prematurely? In our example, note that although the way toformulate a non-specific algorithm is to
physical constraints of the problem (namely the behavior ignore the task's semantics, to consider that all of
of the radar) tend to give the problem a periodic flavor, them are created equal though they are not. Such a
the problem is fundamentally aperiodic because radar priority allocation algorithm is valid only iffrom an
tracks "appear" at random times. After first appearance, if applicative point of view, no task is more important
the track is not lost, the radar updates tend to be fairly than another (no program feature is in jeopardy
periodic if the target is moving slowly or if it is approach- when the concerned task can't execute within its
ing. But not all targets satisfy these two requirements, normal execution window). In the real computing
Also, threats are identified aperiodically. Past attempts, world, there is often a known risk of processing
rooted in using periodicity as a system organizational resource shortage during heavy load situations.
principle, try to solve problems like this by assigning a Specifically in those situations that are irrelevant
single task the job of doing the computation for each of with the common scheduling model paradigms, one
these mostly periodic functions, e.g., having a single should carefully balance the applicative conse-
task do the computation for updating all the tracks. A quences of missing a deadline before mechanically
rationale, for example, is that all the radar updates for allocatingpriorities.

all the tracks will be obtained within approximately For our example problem, dealing with a threat (target) as
1second, leaving one more second in which to do the
computations, without missing the deadline for any of a whole is important so as to be able to meet the overall

deadline of engaging and destroying the threat before it
the tracks. At the end of 1 second, another set of updates
will become available for the next execution of the damages us. Meeting all the component deadlines of all

the tasks that cooperate together to do the computationstask.
necessary to effect this end objective must be considered

The difficulty with this design approach is that the secondary. More important is identification of a new track
individual tracks are the items that have significance. If a as a target and to engage it within 4 seconds if at all
single task is doing the computation for all the tracks, it is possible, for example. This is the essential deadline and
mixing the most significant work with the least significant the only one that really matters in the final analysis. There
work without discriminating one from the other. An may be scores of tasks that meet 10 millisecond artifact
alternative and preferable approach is to categorize tracks deadlines to accomplish this feat; it really does not matter.
by their significance as they are identified and give pri- What matters is meeting the 4 second specification
ority to the processing of more significant tracks as the deadline specified in the requirements.

load increases. Friendly tracks have to be maintained as The secondpoint is that if real-time air defense systems
well as enemy tracks during battle, but under all load
conditions--nominal, significant, or overload--there or battle management systems rely on urgency-based

scheduling techniques alone they may not behave as
needs to be a way of emphasizing the threats and dis- planned under heavy load. Clark (ref. 8), in a paper
posing of them. On the other hand, we do not have to go done for Rome Air Development Center, demonstrates
to the other extreme of assigning one task per track. An
effective design allows for assignment of end-to-end how several widely used scheduling policies lose their
resources that process according to significance or ability to meet deadlines as they approach and exceed
importance as identified in end user requirements. The 100percent load. This results in the well known through-
emphasis on decomposing the system workload into put decay experienced in many real-time systems as loadincreases. Figure 1depicts his results for sets of tasks that
periodic components and scheduling them based on do not share resources. The results get worse as the tasks
urgency or frequency tends to obscure this importance
and, particularly, how the system will behave when become less independent (i.e., cooperate more).
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The four curves in figure 1represent the Dependent 4. The Peer Tasking Design Method
Activity Scheduling Algorithm (DASA) introduced by
Clark in the paper, Locke's Best Effort Scheduling The peer tasking design method derives its name from the
Algorithm (LBESA), a static priority scheduling algo- fact that the tasks in the system are not prioritized. If tasks
rithm, and the Earliest Deadline First algorithm which he have no priorities, how can important functions get done
labels as "Deadline" rather than EDF. Notice that EDF ahead of functions of lesser importance? The key idea is

does the worst under load and yet it is the algorithm that that the work is scheduled at a higher level of granularity
has been proven to be "optimal" in the D-M model (for than individual tasks.

the single processor case) in the sense that if any task set The concept of a task is used in different ways in the real-
can be scheduled by any other algorithm to meet some set time literature. Often it means some schedulable unit of
of deadlines, then it can be scheduled using EDF to meet work. At other times, it means an individual thread of
those deadlines. This serves to illustrate the difference control wherein multiple tasks cooperate. We will need
between the mathematical models in which scheduling both of these distinct concepts and will try to make clear
theorists work and the real world. Briand (ref. 7) also in which sense we are using the term task. Most real
presents some similar graphical information showing how world, real-time system designs decompose real-time
urgency based scheduling can lead to premature missing requirements from the system specification into individ-
of deadlines. Even though in overload conditions Clark's ual processes called "tasks" and assign "deadlines" to
DASA algorithm meets more deadlines than the other these tasks, while the real-time specification provides
algorithms, these may not be the most important dead- deadlines with respect to the requirements rather than
lines. Clark also shows that his algorithm "accumulates with respect to these individual tasks. We refer to these
more value" in the time value sense than the other algo- individual task deadlines as artifact deadlines because
rithms thereby indicating that it is better at distinguishing they are artifacts of how the designer decomposed the
significance while still meeting the most deadlines. This system into tasks rather than any inherent timing
makes Clark's algorithm an attractive contender for requirement in the specification.
LDPARTS. But Clark's algorithm does not ensure that
the most important work will get done at any instance in To be precise, we will refer to the deadlines called out in
time. Our approach addresses this concern and addresses the requirements specification as specification deadlines
the concern of minimizing throughput degradation during to distinguish them from artifact deadlines. From many
overload, discussions with real-time practitioners at conferences



and workshops and from observing how certaingovern- higher importance was executed instead. Since w1 could
ment systems were designed, we believe that common not also be scheduled to meet its deadline at the time Wl
practice takes a requirement from the specification that needed to begin execution to meet its deadline, the system
has a deadline associated with it (i.e., a timing require- was in an overload state. Consequently, it was necessary
ment) and refer to that deadline as the "time budget." to shed Wl in favor of w2. In an overload state the system
That requirement is then decomposed into individual must shed some of the load. In our approach, load
"tasks" that may either be smaller components of work shedding is based on importance. Of course the shedded
that can be parceled out to programmers, or concurrent load may be temporarily buffered in hope that the over-
threads of control in a concurrent design, or some mixture load condition is temporary, and where there is still
of both. A sequential order in which these tasks have to importance associated with doing certain work items late.
execute or a directed graph structure that determines an With current real-time scheduling algorithms, work
ordering in which they can execute may or may not exist, shedding is done at the task level and is based on some
The time budget is then broken down into individual time other criteria, e.g., urgency or frequency.

budgets for the individual tasks that the designer believes We have discussed the decomposition of the system work
will ensure that the overall requirement will be completed load into work items for scheduling purposes, but we
within the specified deadline, if each of the individual have not discussed decomposing the system into individ-
tasks meets its time budget, ual tasks as part of the design process. Based on the
We refer to these work requirements in the specification discussion so far, one might think that the way to proceed
that have associated deadlines as work items. These are would be to decompose work items into tasks. There is no
the units of work that we will schedule (by the application requirement that each work item have a separate task set.

program--not the operating system or the language We propose that the decomposition of the system into
run-time system) rather than the individual tasks that tasks is done according to what we call process modeling,
accomplish the work items. Work specified in the require- a design technique referred to as physical concurrency in
ments specification with no associated timing require- reference 9. In this context, process means a real world
ments will be executed in the background as time permits.

process in the problem domain as opposed to a process in
These lower level (finer granularity) units of work that we the sense of an executable unit of code. A real world

are calling tasks have no intrinsic priority, but while they process is a set of coordinated activities that accomplishes
are executing, they can be thought of as inheriting the some larger function. (In the language of object oriented
priority of the work item. It is not necessary, however, to design a process is a group of cooperating objects.) A
think of them as having any priority whatsoever, because word of caution: work items are not processes. Work
it adds nothing to the design. Thus, a work item is a items are a decomposition of the system workload. What
collection of tasks, which may or may not have a linear or we are describing here is a decomposition of the system
partial ordering, that performs the work item's execution, itself. In the air defense example, managing the input
Work items may be independent or they may cooperate to stream of radar tracks--which includes interrupt
accomplish a larger objective. We will not require that handling, segmenting the incoming stream into individual
they be independent. Instead, we require that a higher tracks, and buffering of track updates---is a real world
importance work item preempt a lower importance work process. Correlating track updates to existing tracks is
item. We also assume that specification deadlines are another. Processing an unclassified track to determine if it
associated with work items and, if work items cooperate is a target is yet another, as is processing an identified
to perform larger objectives, then there are no deadlines target to determine its lethality (significance). By process
associated with these larger objectives. In our air defense modeling we mean modeling each of these real world
example, the work items may be the engagements of processes in the designed system with a single task
individual threats and these work items cooperate in the (independent thread of control). This brings us to our
overall objective of air defense, but there is no deadline second rule:
associated with air defense. This brings us to our first

Rule 2. Model each real world process with a single
design rule: task (independent thread of control).

Rule 1. Schedule work items by importance to meet The central idea in Rule 2 is that process modeling should
their specification deadlines. Usepeer task sets to be the only use for concurrency (application level pro-
accomplish these work items, cesses or tasks). The specification of semaphores,

This rule implies that no work item will miss its deadline buffering messages, and other "low-level" concurrency
unnecessarily. A lower importance work item w I misses constructs should not part of the application or global
its deadline, only because some work item w2 of equal or level design.



The partitioning of the system into tasks using Rule 2 real-time components. Then measure the throughput of
produces a design in which all tasks cooperate to produce work items in the various scenarios of interest. This gives
one or all of the work items. A consequence is that no us the deadlines that can be "guaranteed on-line" by the
task can be shed during an overload condition because no system along with the standard deviations associated with
work items could then be accomplished. This character- these guarantees. If any of these throughputs, deadlines,
istic will be evident in the design used in our case study, or standard deviations fall short of our expectations, we •

make further measurements, but only in the areas that
Nothing in the rule requires one task to have priority over might affect these throughputs or deadlines.
another. Without priorities, task scheduling defaults to
merely a first come first serve dispatcher. Such is the case The next round of testing measures the mean service
with Ada83 tasks (and, in our case, Ada running on top of times of the cyclic functions. To perform these measure-
Unix operating systems). Furthermore, nothing in the rule ments, an event recording package or a monitoring tool is
requires synchronous process or task interaction, which, helpful. Knowing the mean service times of the cyclic
again, is the case with Ada 83 tasks, functions provides insight as to where the bottlenecks

Finally, we have the issue of the design optimization. The reside. This process is continued until it can be deter-
mined that the system can meet the required specification

rules we have advanced thus far may be thought of as level deadlines, or an iteration of Rule 1or 2 or both are
architectural structuring principles with first and second

needed. We summarize the process in the following rule
order effects on performance. Once the architecture is

that we call the tuning rule.
defined, optimization may provide a higher order effect.
Our approach to optimization tunes at the intertask and Rule 3. Reduce the mean service time of cyclic
task interface level, functions.

The real world processes in the problem are being Designing in accordance with these three rules we call the
modeled by individual tasks (independent threads of peer task (process) design method.
control) in our approach. If we think of these tasks as an
interrelated collection of queues we see that the only way
to increase throughput (performance) is to reduce the 5. Case Study
mean service times of these queues. For a given queue, The Remote Temperature Sensor (RTS) system is an
two things contribute to its mean service time. The first is example of a real-time system dedicated to the monitoring
the time to service the queue, and the second is the time of a physical system (in this case, 16 furnaces). The RTS
to get a request from an "upstream" queue to this queue, example originally appeared in the book titled Real-Time
If the implementation language is Ada83, the choices of Languages: Design and Development by Young (ref. 10).
how the tasks interface (e.g., conditional entry calls as Nielsen and Shumate present a version programmed in
opposed to a bare rendezvous) influence the latter delay the Ada language as Case Study No. 1 (ref. 11).Sanden
so it is often helpful to experiment with various task-to- (ref. 12)and Howes (ref. 13) provide additional studies
task interface methods. Continuing this interrelated that include critiques of Nieslen and Shumate's design.
collection of queues analogy, we see that within the In figure 2, the Howes design is presented via Buhr
individual tasks there are functions performed repeatedly diagrams (ref. 14) and served as a basis for the case study
which require significant computation time. We will refer discussed below.
to these as cyclicfunctions. If we think of these cyclic
functions as queues, we have collections of queues within We provide a short summary of the Buhr diagram
queues. To increase throughput, then, requires reducing notation used here and refer the reader to the above
the mean service times of these cyclic functions, although reference for an in-depth explanation. The parallelograms
a given time decrease may not lead to a decrease at the denote Ada tasks which are concurrent objects or pro-
work item level, cesses. Interconnecting lines denote communication,

which may be thought of as asynchronously occurring,
To systematically reduce the mean service time of cyclic concurrent procedure calls. In these calls, parameters may
functions, one must first learn what these service times be passed in either direction; the direction is usually
are. This presupposes that we can measure these service denoted with an arrow, and the passed parameter values,
times which, in turn, implies that there is something to if any, are denoted next to the line. Ada provides alterna-
measure. Consequently, we advocate the following tives for making calls that are conditional, i.e., that
development approach, depend on the readiness of the called or the length of time

Design the system using Rules 1and 2. Then implement one is willing to wait for a call to be accepted. These are
the real-time components of the system, stubbing off non- denoted by arcs that approach a parallelogram (task) and
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Figure 2. Howes design.

curve back toward their origination. Some of the diagrams different, periodicity sets (modes) unwieldy. Note also
show parallelograms contained within larger boxes and that the processing of periodic and aperiodic messages is
show arrows touching very small boxes tangent to the interwoven which further compounds the application of
sides of the larger boxes. These denotations deal with Ada such a scheduling policy. The arrival rate of control
specific details where the designer has chosen to guard packets, controlpacket acknowledgments, and data
the accessibility of objects according to acceptable packet acknowledgments is random, whereas the arrival
software engineering practice, of data packets, which are generated at the current

sensing rate for a given furnace, is periodic.
Briefly, what the RTS system does is receive messages
from a host system in the form of control packets (CPs) Our design of the RTS system divided the work load of
and send messages back to the host in the form of data the system into two work items, namely the processing of
packets (DPs). Each DP contains a furnace number and its a CP (CP work item) and the processing of a DP (DP
temperature. These temperature readings are obtained by work item). CP processing involves (1) the receiving of a
sending a furnace number to the digital thermometer, C1a message from the host system, (2) the updating of the
which returns that furnace's temperature. The CPs from furnace reading database, (3) the packaging of a CP
the host are used to change the rate at which the furnaces Acknowledgment message, and (4) the transmission of
are read. They contain a furnace number and its sensing this message to the host. DP work item processing
rate. In our design, we allowed for the requirement that involves (1) monitoring the furnace reading database and
different furnaces may be sampled at different and the clock to determine if it is time to read another furnace,
unrelated rates and that these are subject to change at (2) sending a furnace number to the digital thermometer,
any time with the issue of a new CP from the host. (3) receiving a temperature reading from the digital

thermometer, (4) packaging the temperature reading into
This is an example of a system with dynamically chang- a DP, (5) sending the DP to the host, (6) receiving the DP
ing sensing rates that makes designing to accommodate a by the host, and (7) receiving the DP Acknowledgment
scheduling policy based on static, or at most finitely many from the host system.



We now discuss measurements made to verify how well Several real-time practitioners with whom we discussed
the case study's real-time behavior matches the three preemption overhead were aware that, in their systems,
scheduling properties mentioned earlier. These measure- preemption overhead is significant. Others seemed to
ments are by no means exhaustive, but do illustrate the ignore it based on the assumption that context switching
feasibility of our approach, times are "small'" (usually in the 150 to 200 microsecond

Since the processing of DPs (in the absence of CPs) is range) and can be included in the task's computation time
essentially periodic, we first measured the minimum for purposes of analysis. Clearly no real world preemption

scheme can work perfectly, like the zero preemption
on-line deadlines that could be met for a processing load
consisting solely of DP work items. We also measured the assumption of the D-M model. In the real world we
timing stability; i.e., the standard deviation of work item usually, if not always, have preemption points. Checks to
throughput obtainable with our design, determine if preemption is needed usually occur at certain

points in the application program or, in the case of
We determined that the mean time for processing a DP interrupt drivenpreemption, at regular intervals deter-
work item on a SUN 3/60 was 7.348 milliseconds and the mined by signals from an interval timer. In the limit, it is
standard deviation was 37.4 microseconds. In other conceivable that a system could be designed that would
words, there was an extremely small variance around the check to see if preemption was needed after each
mean and an on-line guarantee of, say, 8 milliseconds instruction was executed, but clearly this is an impractical
could be made that would be practical for a reasonable extreme. In both cases, no preemption is possible between
design. If a more conservative guarantee was desired, preemption points. It is also conceivable that a totally
then statistically an on-line guarantee of 9 milliseconds aperiodic system would only check to see if preemption
would not be violated within the lifetime of the system, was necessary when an external interrupt was received,
The mean and standard deviation of CP work item but even in this case, preemption cannot occur when the
requests for service were found to be 9.915 milliseconds system is in certain states, for instance, while a running
and 129.6 microseconds. This timing stability (at the program is in a critical section.
work item level) is a step toward verification of
scheduling property 1. Consequently, receival of a higher priority request for

service while a lower priority item is being processed
Next, we measured the mean and standard deviation of does not mean the higher priority request is serviced
DP work item processing during heavy overload. It was immediately. Some time will elapse before the higher
found that the behavior was exactly the same and likewise priority request is honored. Conceptually, this time
for CP work items. In our design, during overload, excess interval can be made arbitrarily small, but in the real
requests for service are shed and they are not buffered for world, doing so is often impractical (prohibitively
later processing. During overload and non-overload, the expensive).
DP work item requests for service are honored, by
application program design, in a way that is fair with When scheduling work items instead of individual tasks,

the question about preemption points takes new meaning.
respect to all the furnaces, with the oldest request for With fewer units of work (i.e., fewer work items than
service for a given furnace being shed first. We note that
such timing stability was achieved with a general purpose tasks) we should have lower scheduling overhead and
operating system, Unix, and that other applications may lowerpreemption overhead. In many cases, it may be
achieve similar real-time behavior without resorting to the entirely adequate to preempt only at task execution

boundaries since an individual task execution may onlyuse of a special purpose real-time one. This result is a step
account for a small fraction of the time it takes to processtoward verification of scheduling property 3.
a work item. The advantage of preempting only at task

We now report on measurements to verify whether work boundaries is that it can be accomplished at the applica-
item performance incurs degradation in throughput tion program level without preempting a running task.
caused by on-line task scheduling, which is scheduling Thus the need for a preemptable kernel is eliminated.

property 2. In regard to this property, we found preemp- To study the impact of preemption, we had to have a
tion of tasks (processes) to have a significant impact on point of comparison, namely the case of no preemption.the real-time behavior. Before we discuss our findings we

From previous measurements, we knew how long it tookdiscuss the issues of preemption in the D-M model and in
implementation, to process a work item of each type in the absence of

work items of the other type, i.e., the default case of no
The D-M model assumes that preemption time is zero, so preemption. Now, we studied the case of no preemption,
it has no predictive power when it comes to questions where both types of work items were assigned the same
regarding preemption times in real-world systems.
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importance, and requests for service for both of these are Table ! shows the results of an experiment we conducted
made simultaneously and over a range of loads, that exhibits these unpredicted phenomena. In the

, experiment, we set the furnace reading frequencies so
The application program's control logic (monitor package high that there would always be another DP work item to
in fig. 2) ensured that a request for a DP work item is service before the previous DP work item was completed.
never made until the previous DP work item request is We varied the number of CP work items from 1,001 to

" processed and likewise for CP work item requests. Hence 12,001in increments of 1,000 CP work item requests.
only CP work item requests can be received during DP These requests were equally spaced during the 2 minute
work item processing and vice versa. In an overload (120,000 millisecond) run time for each individual
condition where there is an adequate number of requests experiment, rather than aperiodically. The meanings of
of both types, this leads to an interleaving of CP and DP the columns in table 1are as follows. Column 1is the

work item requests. Consequently, from what we already number of CP work item requests during each 2 minute
observed, we would expect that we could always guar- run. Column 2 is the actual number of CP work items
antee that a CP work item could be processed within processed. Column 3 is mean time to service a CP
17.263 milliseconds (the sum of the time to process first a work item in the absence of DP work item processing.DP work item and then a CP work item if both CP and

Column 4 is the actual number of DP work items pro-
DP work items have the same importance). We found cessed (in between CP work item processing). Column 5
that this is not the case. We found that there is something is the mean time to service a DP work item in the absence
we call contention overhead. When requests for both

of CP work item processing. Column 6 is the total timeCP work items and DP work items are constant and
thatshould have elapsed given the number of actual CP

neither has priority over the other, there can be up to a and DP work items that were processed and their
14.45 percent throughput degradation on a SUN 3/60. respective mean service times.
Consequently, the on-line guarantee has to be increased
by 10.45 percent to at least 19.75 milliseconds, yet the Notice that, in the case of 1,001 CP work item requests,
timing stability of the system has not changed. We can this total time figure is 126,207 milliseconds when
still offer this guarantee with a similarly small standard in fact the run time was only 120,000 milliseconds
deviation; rather, the guarantee is now not what the theory (2 minutes). According to our theory, this should not be
predicts, i.e., scheduling property 1. While this deviation possible. Thus, when relatively small numbers of CP
may be an artifact of our design, it is possible that other work item requests are intermixed with DP work item
phenomena are present in the Ada run-time system-- requests, the system appears to speed up. However, this
phenomena, which manifest themselves in the real phenomenon is not as mysterious as it first appears, but
world, that are not taken into consideration in the has to do with the default task scheduling we accepted
D-M model, from the Ada run-time system we used. When measuring

work item performance on a single processor machine, it

Table 1.Result of equal priority work items with different deadlines

CP Actual CP DP Total Contention

requests CPs mean DPs mean time Percent overhead

1,001 1,001 9.915 15,825 7.348 126,207 105.130 -5.00

2,001 2,001 9.915 13,617 7.348 119,897 99.99 0.01
3,001 3,001 9.915 11,120 7.348 111,465 92.88 7.22
4,001 4,001 9.915 9,357 7.348 108,464 90.35 9.65
5,001 5,001 9.915 7,617 7.348 105,554 87.96 12.04

" 6,001 5,941 9.915 5,942 7.348 102,566 85.46 14.53
7,001 5,940 9.915 5,943 7.348 102,564 85.47 14.53
8,001 5,940 9.915 5,943 7.348 102,564 85.47 14.53
9,001 5,941 9.915 5,942 7.348 102,566 85.46 14.53

10,001 5,940 9.915 5,943 7.348 102,564 85.47 14.53
11,001 5,939 9.915 5,942 7.348 102,546 85.45 14.53
12,001 5,938 9.915 5,941 7.348 102,528 85.44 14.53
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is necessary to run both the external event simulator and The next experiment was running RTS with preemption
the RTS system on the same processor. CP work item where CP work items had higher importance than DP
requests for service are initiated by the host processor that work items. Table 2 shows the results of this experiment.
is part of the external event simulator whereas DP work
item requests are initiated in the RTS system itself. At the We get considerably more CP work items processed
completion of a DP work item the default task scheduler during a 2 minute run. As can be seen, the number of CP
in the Ada run-time system often schedules the tasks from work items that can be processed now levels off near
the external event simulator next. If there is a CP work 8,400. The varying figures have to do with the fact that

item request waiting, it can be initiated more rapidly than preemption occurs at various levels of completion of DP
work items. Notice that approximately 2,800 DP work

waiting until the transporter task runs again to start items still get processed. In order to reduce this preemp-
another DP work item. Consequently, we end up tive leaking further it would be necessary to design the
achieving even better throughput than we might expect
because the CP and DP work item processing times system to preempt running tasks, thus increasing preemp-
included this additional task scheduling overhead in their tion overhead. Notice that the preemption overhead at

task boundaries is insignificant up to about 5,000 requests
original measurements. We discovered these findings by for CP work items in a 2 minute interval. In fact, as in the
analyzing detailed event traces of similar runs.

previous case, with moderate numbers of CP work item
As the number of CP work item requests increases, this requests, RTS runs better than the theory predicts. For
apparent speedup disappears and gradually turns into a real world systems this high level of work item preemp-
slowdown that culminates at a 14.53 percent decline in tion would probably never occur, thereby showing that
throughput over what the model predicts. When 6001 CP our method introduces little preemption overhead into the
work item requests are made during the 2 minute run, the solution. Subsequently, we took the opportunity to run
RTS system can no longer get them all done because CP our case study on a Sparcstation 10and a Silicon
work items and DP work items both have the same prior- Graphics IRIS 4D/440VGXT workstation. We noticed
ity, and the system can only process about 5,940 of each that the mean service time for DP processing and the
during a 2 minute run. Therefore, with yet higher CP corresponding standard deviation were an order of
work item requests for service during a 2 minute run, magnitude smaller. Although we did not have time to
the results do not change as table 1 shows. Because the make all the measurements made on the SUN 3/60, the
experimental data produce a covariance of approximately results appear to scale linearly, i.e., standard deviations
zero, the CP and DP work item processing is essentially are still nearly three orders of magnitude less than
independent. At the present time we do not understand measured computation times of work items. The Ada
what causes this slowdown because the cause of the compilers we used (and run-time environments) were
phenomenon appears to be below the threshold of our from Verdix. Though different versions existed on
current event tracing tools.

Table 2. Results of preemption at task boundaries

CP Actual CP DP Total Contention

requests CPs mean DPs mean time Percent overhead

1,001 1,001 9.915 16,380 7.348 133,959 111.63 -11.63
2,001 2,001 9.915 14,972 7.348 129,854 108.21 -8.21
3,001 3,001 9.915 12,775 7.348 123,625 103.02 -3.02
4,001 4,001 9.915 11,078 7.348 121,071 100.89 -0.89
5,001 5,001 9.915 9,375 7.348 118,472 98.73 1.27
6,001 6,001 9.915 7,736 7.348 116,344 96.95 3.05
7,001 7,000 9.915 5,584 7.348 110,436 92.03 7.97
8,001 8,001 9.915 3,590 7.348 105,709 88.09 11.91
9,001 8,330 9.915 2,780 7.348 103,019 85.35 14.15

10,001 8,402 9.915 2,802 7.348 103,915 86.60 13.4
11,001 8,330 9.915 2,780 7.348 103,019 85.85 14.15
12,001 8,398 9.915 2,801 7.348 103,848 86.54 13.46
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different platforms, we found the impact of these differ- would be constant and there would be nothing to prove.
ences to be negligible in our experiments. But since computation times in the D-M model are known

., at the task level and since it is known that the total time it
takes for a collection of tasks to execute is not necessarily

6. Proofs of Peer Tasking Behavior the sum of the computation times of the individual tasks
_ The D-M model assumes that the status of a task whose (recall the theoretical overhead of RMS (ref. 5)) it is not

start time has elapsed can be characterized by two param- clear without proof that the computation time for a given
eters, C and D, that represent the computation time (C) type of work item is constant.

and the deadline (D) by which the task must complete. If we know that a given work item w can be executed
Furthermore, it is implicitly assumed that the schedul- once in time C then all the tasks in w would be executed
ability of a set of tasks {ti}for i = 1... m can be deter- within time C. Let W denote the set of tasks that accom-

mined solely by this information, Ci (the computation plishes w. If we set the start time for each of these tasks to
time for task ti), and Di (the deadline for task ti) for each zero (even though they do not all start at time zero, which
task ti under the conditions stated in the hypotheses of is permitted in the model) and the deadline for each of
their theorems. The D-M model rules outdata- or state- these tasks to C, then it is clear that the task set W was
dependent algorithms in tasks since the task computation scheduled in such a way that all the tasks in W met the
times are assumed to be constant. It also rules out pre- common deadline C. Hence a schedule exists as described

emption overhead or scheduling algorithm overhead, in the hypothesis of their theorem. Now applying their
There are many real world problems where it is not theorem, we see that in the future it will always be pos-
possible to know the computation times Ci very accu- sible to schedule this task set W at run time such that the

rately for any or all of the tasks ti. This can be due to deadline C can be met, provided, of course, that there
several reasons. In practice what we usually have is an does not exist a higher priority work item to schedule at
average computation timeA i and a variancemeasured by the time the request for service for w is made and pro-
a standard deviation si. In many cases si can be significant vided no request for service for a higher priority work
with respect toAi. item is made prior to time C. Consequently, we have

To prove the behaviors, we use the following theorem established what we set out to prove. We record this
(ref. 1, p. 1503) which was proved for both single and result as

multiple processor machines. THEOREM 1. If a work item w can be scheduled

THEOREM (Dertouzos and Mok, 1989). If a once to execute in time C, then the set of tasks that
schedule exists that meets the deadlines of a set of executes w can always be scheduled at run-time to
tasks whose start times are the same, then the same meet a deadline equal to C provided there is no
set of tasks can be scheduled at run time even if their requestfor servicefor a work item of higher priority
start times are different and not known a priori, during this time period.

Knowledge of the preassigned deadlines and compu- Theorem 1 applies to both single and multiprocessor
tation times alone is enoughfor scheduling. One machines since the Dertouzos and Mok theorem is so

successful run-time scheduling algorithm is the proved. Also Theorem 1implies that the variance in the
Least Laxity algorithm, execution time of w is zero, which never happens in the

Let us now consider what it is we need to prove. First, we real world.This is strictly a property of the D-M model.

want to show that if a work item w can be performed once Next we want to show that for a single processor machine
in time C by a collection of tasks {ti }where i = 1... m, there is no on-line task scheduling overhead for work
then w can always be scheduled at run time to meet a items that are performed by a collection of peer tasks.
deadline D = C provided there do not exist work items This is not to say there is no scheduling overhead,
of higher priority to be scheduled when the request for because we must schedule the work items. For example,

• service for this work item is made, and provided no in our case study, scheduling overhead at the task level
requests for service for a work item of higher priority is defaulted to a dispatch operation of first in first out
made before time C. This is equivalent to constant (FIFO).
computation time for a work item; the constant is the
inverse of the throughput (for this type of work item), We again invoke Dertouzos and Mok's theorem. The
calculated in work items per second. If it were known that Least Laxity algorithm will successfully produce an
the computation time of a work item was the sum of the on-line schedule for a schedulable peer task set W corre-
computation times of the tasks that accomplish the work sponding to the work item w given the preassigned
item then, of course, the work item computation time deadlineD (which we assign to each task in W) and the
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work item computation time C <D. For a single processor any member of W is less than or equal to P, but P < M
machine, the Least Laxity algorithm and the Earliest where M is the sum of the computation times of members
Deadline First (EDF) algorithm are equivalent in that if a of W. We say that throughput is not degraded during
task set can be scheduled with one of them then it can be overload if for each overload period tO,P, W, the
scheduled by the other. Dertouzos and Mok state the EDF maximum number of work items from W are completed
algorithm as follows: by tO+ P subject to the constraint that no additional

Execute at any time the task whose deadline is requests occur before tO+ P and if wI _ W is completed
closest. Ties are broken arbitrarily, and w2 _ Wis not completed by tO+ P, then either the

importance of w I was greater than the importance of w2
Consequently, EDF is an algorithm that will be successful or else w I and w 2 had the same importance but wI was
in producing an on-line schedule for the task set W given requested prior to w 2.
the knowledge of the preassigned deadline D and work First we demonstrate that it is true for a workload

item computation time C. Since the tasks in W are peer consisting of a single work item type, all with equal
tasks, none have priority over the other, so there is no task

importance. All work items in W have the computation
level scheduling overhead to assure a particular ordering time C (by Theorem 1).Since work item processing timeof the tasks. Also, since all the tasks have the same dead-
line D, whatever order they are executed in will satisfy is constant, the system will produce a throughput T= P/C

work items. Tmay not be an integral number, so let R = T
the EDF scheduling criteria. Therefore, we can accept the truncated to the nearest positive integer. Then there must
default scheduling algorithm of the run-time system or
operating system with the assurance that this default exist more than R work items in W. Consequently, if the
scheduling will be optimal. In particular, if the system is system logic is to do the first R requests for this particularwork item, then the maximum number of work items
implemented in the Ada programming language as our from W are completed subject to the constraint that if
test bed is, we control the execution order of the peer
tasks merely by the proper use of guards on the task Wl' w2 _ W and w I is executed but w2 is not, then w 1
entries and task calls to assure proper logical execution was requested prior to w 2. Therefore, throughput is not
of the task set. We have established degraded during overload in this case.

Next consider a workload W consisting of work items of
THEOREM 2. For a singleprocessor machine, there multiple types or importances. Let Wl be the first work
is no on-line task scheduling overhead in the peer item in W.Then w I has some computation time C1 and
tasking theory, we know that the system can process T1 = P/C1 of this
COROLLARY. Peer taskingforces optimal task level type work item during P. Let R1 = T1 truncated to the
scheduling by default on a singleprocessor machine, nearest positive integer. If there are at least R1 + 1 con-

The proof of the corollary follows from the fact that secutive work items in W of the type of Wl, the system
whatever order the tasks are executed in satisfies the EDF will process R1 of them during P. Hence the maximum

scheduling criteria and the fact that EDF scheduling is number of work items from W subject to the constraint
optimal for a single processor machine (ref. 5). that ifw 1, w2 _ Wand w 1 is processed but w 2 is not, then

either w I was more important than w2 or else they have
Finally, we want to show that throughput is not degraded the same importance but the request for w1 preceded the
during overload. By an arbitrary work load A we mean a request for w2. In other words throughput will not be
finite sequence of work items {wi}, i = 1... m such that degraded during overload.

if i < j then the request to do w i occurred prior to the If there do not exist R1 + 1consecutive work items of this
request to do wj. We assume that the system receives the type in W, let kl <R1 denote the number of consecutive
sequence A and reorders it into a sequence W of work work items of this type in W. By Theorem 1, a time of
items, _,j = 1... n, consisting of all requests received klC1 will be expended executing these kl work items and
up to the present (so n -_m) and such that if i < j then wi there will be P - klC1 time remaining to process the work
is more important than wj or they are of equal importance items in W. Let w2 _ W be a work item in W following
and the request for w i preceded the request for wj. We
refer to W as a prioritized work load. the k1 work items of the type of work item w 1-If the

computation time C2 of w2 is greater than P- kI C1,
By an overload period we mean a period of time P that then again we have shown no degradation of throughput
begins at some time t o at which a scheduling decision during overload in this case. If C2 < P- kl C1, then by
must be made and a prioritized work load W consisting an argument similar to the above, either there will be no
several work items such that all the work items in W are throughput degradation during overload or else there
requested to finish by to + P and the computation time of
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exists a positive integer k2 <R2 where R2 is the positive specification level work items. This rule has the greatest
integer obtained by truncating T2 = (P - k 1C1)1C2. overall effect on the behavior of the system. Rule 2 pro-

duces 2° effects at the task (process) level. It guides
We cannot continue this process indefinitely since W has assignment of objects and functions to tasks. Rule 3 gives
only finitely many work items. Hence after some k itera- 3° effects because it optimizes the tasks (or processes). It
tions, there will be more consecutive work items of some

: type _ than can be processed during the remaining time, has the least effect on overall system behavior. Althoughthese rules guide, they are not a recipe for all the details
so, as before, the system will process the maximum

of a successfuldesign.
number of work items from W subject to the constraint
that if w 1, w2 _ W and wI is processed but w2 is not, As a systemorganizing principle for scheduling, the
then either wI was more important than w2 or else they method uses importance. This abstraction is superior to
had equal importance but the request for w I preceded the urgency based priority schemes for systems where over-
request for w1. Therefore, throughput is not degraded load is unavoidable and dynamic reallocation of resources
during overload. We record this result as based on user or domain specified semantics is a

THEOREM 3. There is no throughput degradation necessity.
during overload with peer tasking.

Again, Theorem 3 holds on both single and multipro- 8. Further Research
cessor machines. The effective use of the work item concept is closely tied

to the capability to implement the abstraction of impor-
tance. More research is needed on this abstraction as a

7. ConcludingRemarks scheduling mechanism. A recent survey (ref. 15) on
The peer task method addresses the "disconnect" between classical scheduling results focuses exclusively on
design theory and scheduling theory. This paper has tied urgency based results. Many of these results are signifi-
together an existing real-time mathematical scheduling cantly practical in specific domains. But efforts in
model with three new scheduling properties, our prescrip- generalizing these have led to increasingly complex
tive design guidelines, and a design case study with solutions so that the effort to implement, maintain, and
measurements of how close its real-time behavior modify systems accommodating these outweighs the
approaches what is predicted, benefits. No less than a major shift in thinking outside the

pale of existing mathematical models may be needed.
The peer task method offers a scheduling guarantee that is Whether the approach introduced here of statistically
qualitatively different from the type of guaranteeoffered

approximating the D-M model may be carded further
by urgency based scheduling. The work item throughput without falling into the same trap remains to be investi-
guarantee is localized in time and with respect to the set gated. Perhaps the D-M model may be augmented, or
of tasks that accomplishes the work item. Furthermore, replaced, in a way that retains significantly practical
this guarantee is independent of state; it will always hold results yet incorporates more fully the importance
regardless of the load on the system. We call this a hard
local guarantee. Urgency based scheduling offers what concept. This area is one candidate for further research.
we call soft global guarantees. By soft we mean that a Besides the development of its theoretical underpinnings,standard services to support its implementation are
guarantee is dependent on the state of the system. By needed.
global we mean that it applies to all tasks at all times.
This is because conventional urgency based scheduling Development of such services has begun as seen in user
tries to guarantee that all deadlines are met as long as defined or customized scheduling features in MACH 3
the theoretical overload threshold is not exceeded. The (ref. 16).With this facility, users may select and control
theoretical overload threshold depends on the algorithm system resources through their own designation of
employed. For EDF on a single processor machine it is parameters and embed their own custom scheduling

, 100percent processor load. For RMS it is approximately algorithms in the operating system kernel. Additional
69 percent for ten tasks (ref. 5). Above these theoretical flexibility and customization of such facilities over what
load levels these guarantees are void and the behavior is is available here may be needed to make full use of
not guaranteed, importance based scheduling. This area is another

candidate for further research. On the other hand, support
Our design method rules produce what can be thought of facilities for importance may be coming from outside theo o

as first (1o), second (2), and third order (3) effects, conventional disciplines of real-time scheduling and
Rule 1produces 1° effects because it guides system operating systems. The technology driven to address
decomposition for scheduling purposes, namely into
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multimedia's and the information highway's needs have Systems, Institute for Defense Analyses
significant real-time requirements. The infrastructure Document D-1425, July 1993.
being developed to address these may provide a rich set

5. Liu, C.; and Layland, J.: Scheduling Algorithms forof interfaces to resources that will enable importance
based scheduling in LDPARTS, particularly those that Multiprogramming in a Hard Real-Time
have been designed to provide configurable isochronous Environment. Journal of the ACM, vol. 20,

no. I, Jan. 1973, pp. 46-61.services. Investigation of the definition and use of such
services in a case study using the peer task method is 6. Kavi, K. M.; and Yang, Seung-Min: Real-Time
another area for further research. Systems Design Methodologies: An Introduction

and a Survey. Journal of Systems Software,Finally, more experience in the application of the method
vol 18, 1992, pp. 85-99.is needed. We have discussed the underlying elements of

the method, the abstraction of importance and the means 7. Briand, L.: Ada Real-Time Systems and Basic
to implement it. Separate from these, further investigation Priority Inheritance. ACM Ada Letters, vol. 14,
in how to use and tailor these guidelines in the initial no. 3, May-June 1994.

phases of a project is needed. Preferable to inventing new 8. Clark, R.: Scheduling Dependent Real-Time
software packages is the investigation of adapting and Activities. In Decentralized Real-Time Sched-
integrating existing ones. Since the method is best suited
in a "cut and try" project development environment, and uling, Rome Air Development Center Technical
given the current trend to rapid prototyping to evaluate Report No. RADC-TR-90-182, Aug. 1990.
and verify system requirements, our approach may be 9. Howes, N.: Real-Time Ada Design Methodologies
readily adopted. However, rapid prototypes are often built and their Impact on Performance. IDA Paper
to be discarded after initial evaluation, and the tools used No. P-2488, June 1991.
offer little, if any, integration into the remainder of the

10. Young, S.: Real Time Languages: Design andlife cycle. Because of our method's reliance on statisti-
cally significant data gathered in the real environment Development. Ellis Horwood Limited, England,1982.
such use of rapid prototyping is not optimal. A better
approach is to use a tool such as ROOM (ref. 17) that 11. Nielsen, K.; and Shumate, K.: Designing Large Real-
integrates rapid prototyping into the life cycle. Further Time Systems with Ada. McGraw-Hill,
research with contemporary tools and paradigms such as New York, 1988.

objects will help us build in-budget and on-time large 12. Sanden, B.: Entity-Life Modeling and Structured
scale distributed parallel architecture real-time systems. Analysis in Real-Time Software Design--
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